Turnover is replaced by nestedness with increasing geographical distance in bacterial communities of coastal shallow lakes

Abstract

In this study we measured the relative contribution of two components of b-diversity, turnover and nestedness, of bacterioplankton among 25 shallow lakes in southern Brazil and tested their relationship with local (environment, chlorophyll-a and biomass of phytoplanktonic classes) and landscape variables, as well as geographical distance. We predicted that turnover would be the largest share of total b-diversity due to the variation of local characteristics among lakes. Further, we expected nestedness to increase at the expense of turnover with increasing geographical distance among lakes due to dispersal limitation. The results indicated a higher contribution of turnover than nestedness to total b-diversity, which was driven by local factors. When the relationship between b-diversity components and the spatial extent between each lake and all other lakes was considered, turnover was replaced by nestedness with increasing geographical distance for 8 (the furthermost lakes) of the 25 lakes likely because of a combination of decreasing dispersal due to distance and richness differences due to wind-driven mass effects. The results of this study suggest a role for nestedness as an indicator of dispersal limitation owing to geographical distance and wind dispersal, and for turnover as an indicator of species sorting because of environmental filters for these freshwater bacterial communities.

Publication
Marine and Freshwater Research
Fabiana Schneck
Fabiana Schneck
Professor of Ecology